扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
作者:赛迪网 Alice 来源:天新网 2008年4月14日
关键字: SQL 数据库 SQL Server Mssql
一 Data Mining 和统计分析有什么不同?
硬要去区分Data Mining和Statistics的差异其实是没有太大意义的。一般将之定义为Data Mining技术的CART、CHAID或模糊计算等等理论方法,也都是由统计学者根据统计理论所发展衍生,换另一个角度看,Data Mining有相当大的比重是由高等统计学中的多变量分析所支撑。但是为什么Data Mining的出现会引发各领域的广泛注意呢?主要原因在相较于传统统计分析而言,Data Mining有下列几项特性:
1.处理大量实际数据更强势,且无须太专业的统计背景去使用Data Mining的工具;
2.数据分析趋势为从大型数据库
3. 纯就理论的基础点来看,Data Mining和统计分析有应用上的差别,毕竟Data Mining目的是方便企业终端用户使用而非给统计学家检测用的。
二 Data Warehousing 和 Data Mining 的关系为何?
若将Data Warehousing(数据仓库)比喻作矿坑,Data Mining就是深入矿坑采矿的工作。毕竟Data Mining不是一种无中生有的魔术,也不是点石成金的炼金术,若没有够丰富完整的数据,是很难期待Data Mining能挖掘出什么有意义的信息的。
要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统(Design Support System)所需的数据,供决策支持或数据分析使用。从信息技术的角度来看,数据仓库的目标是在组织中,在正确的时间,将正确的数据交给正确的人。
许多人对于Data Warehousing和Data Mining时常混淆,不知如何分辨。其实,数据仓库是数据库技术的一个新主题,利用计算机系统帮助我们操作、计算和思考,让作业方式改变,决策方式也跟着改变。
数据仓库本身是一个非常大的数据库,它储存着由组织作业数据库中整合而来的数据,特别是指事务处理系统OLTP(On-Line Transactional Processing)所得来的数据。将这些整合过的数据置放于数据昂哭中,而公司的决策者则利用这些数据作决策;但是,这个转换及整合数据的过程,是建立一个数据仓库最大的挑战。因为将作业中的数据转换成有用的的策略性信息是整个数据仓库的重点。综上所述,数据仓库应该具有这些数据:整合性数据(integrated data)、详细和汇总性的数据(detailed and summarized data)、历史数据、解释数据的数据。从数据仓库挖掘出对决策有用的信息与知识,是建立数据仓库与使用Data Mining的最大目的,两者的本质与过程是两回事。换句话说,数据仓库应先行建立完成,Data mining才能有效率的进行,因为数据仓库本身所含数据是干净(不会有错误的数据参杂其中)、完备,且经过整合的。因此两者关系或许可解读为Data Mining是从巨大数据仓库中找出有用信息的一种过程与技术。
三 OLAP 能不能代替 Data Mining?
所谓OLAP(Online Analytical Process)意指由数据库所连结出来的在线分析处理程序。有些人会说:「我已经有OLAP的工具了,所以我不需要Data Mining。」事实上两者间是截然不同的,主要差异在于Data Mining用在产生假设,OLAP则用于查证假设。简单来说,OLAP是由使用者所主导,使用者先有一些假设,然后利用OLAP来查证假设是否成立;而 Data Mining则是用来帮助使用者产生假设。所以在使用OLAP或其它Query的工具时,使用者是自己在做探索(Exploration),但Data Mining是用工具在帮助做探索。
举个例子来看,一市场分析师在为超市规划货品架柜摆设时,可能会先假设婴儿尿布和婴儿奶粉会是常被一起购买的产品,接着便可利用OLAP的工具去验证此假设是否为真,又成立的证据有多明显;但Data Mining则不然,执行Data Mining的人将庞大的结帐数据整理后,并不需要假设或期待可能的结果,透过Mining技术可找出存在于数据中的潜在规则,于是我们可能得到例如尿布和啤酒常被同时购买的意料外之发现,这是OLAP所做不到的。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者