至顶网安全频道 02月08日 编译:当数据散布在数据库和网络中的时候,有很多方法可以保护数据,即使这些方法远非完美。但是,当数据在云应用和服务中被动态调用的时候又该如何呢?
这种特定的数据状态是“机密计算”这一新概念旨在解决的问题。近日,谷歌宣布启动一项新的挑战赛,旨在利用机密计算技术促进云安全相关的更多创新。
Confidential Computing Challenge的目标是激励开发人员从今天至4月1日期间为机密计算这一新兴领域提出新的用例。获胜者将获得15000美元、5000美元的Google Cloud Platform积分和“惊喜硬件礼品”。
重要的是,这一挑战赛还旨在吸引人们对谷歌去年5月推出的Asylo开源机密计算框架以及Google Cloud的兴趣,目前谷歌云还远远落后于AWS和微软。Asylo在希腊语中意为“安全空间”,它旨在使数据和应用在使用时更容易创建Enclave或者“可信执行环境”。
特别是,在这些机密计算环境中运行应用,可以保护企业或者云提供商防止恶意内部人员、网络漏洞、受损操作系统软件以及插入设备基本BIOS软件的恶意固件。
“我们认为这是增强云安全性迈出坚实的下一步,”谷歌云安全技术主管Brandon Baker表示。
Enclave提供机密性、代码完整性和证明,也就是代码执行相关的身份,通过英特尔的Secure Guard Extensions(SGX)、AMD的Secure Encrypted Virtual Machines(SEV)以及Arm的TrustZone等指令代码用于芯片中。
问题在于,开发人员很难实现这种新的安全性,因为它依赖于特定的硬件。Baker说:“这给开发人员带来了很多挑战,”尤其是当前实施针对的是工作站,而不是作为云计算基础的服务器。
为了应对这些挑战,谷歌推出了Asylo(目前用于谷歌自己的云中),以便轻松构建在Enclave中运行的应用,目前是运行在英特尔SGX上,但未来将集成到主流的开发人员管道中。
但很明显,谷歌意识到自己无法完成所有这些解决诸如可靠的应用设计流程、安全性与性能之间的权衡等棘手问题的挑战。谷歌希望其他开发人员尝试新的安全模型,并开发更多标准,以开发使用机密计算的应用,在各种计算环境中实现便携性。
“现在还是相当早期的阶段,”Baker说。
谷歌并不是唯一一家推动机密计算的公司,微软也在Azure基础架构云中提供这项技术。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。