至顶网安全频道 02月07日 编译:安全性的责任应该由云服务供应商与客户共同承担。这种责任分摊模式有助于减轻客户的运营负担,因为云服务供应商将承担起从主机操作系统到虚拟化层,再到运行组件所必需的设施物理安全性等层面的一切运营、管理与控制职能。
就在不久之前,当向基础设施即服务(简称IaaS)平台部署应用程序时,客户还仍然需要承担操作系统的管理与运营责任,包括更新与安全补丁安装、应用程序软件关联以及云端网络防火墙配置等等。在虚拟实例方面,客户有责任认真考量他们所选择的服务选项,确保所使用的服务与其实际需求相匹配,将这些服务与IT环境整合起来并遵循适用的法律法规要求。
但随着无服务器计算(亦被称为函数即服务,简称FaaS)的出现,安全性的天秤进一步朝着云服务供应商倾斜,这意味着组织能够更多将这部分任务移交给供应商并进一步专注于自己的核心业务。然而,通过将安全责任转移到云端,企业到底能够获得多少收益?在今天的文章中,我们将用简单的比对聊聊这个问题。
核心要求:从物理层面到应用层的安全性保障
以下条目遵循自下而上的顺序,我们将从物理安全性开始,一路上升至应用层。
IaaS:服务供应商与客户
IaaS:安全责任;
云服务供应商责任;
客户责任;
在IaaS上开发应用程序时,安全责任大致包含以下几种:
云服务供应商责任
客户责任
无服务器(FaaS):云服务供应商与客户
无服务器:安全责任;
无服务器云服务供应商责任;
无服务器客户责任;
在立足无服务器架构进行应用程序开发时,如何进行责任划分:
云服务供应商责任
客户责任
FaaS还是SaaS?
很明显,各项任务与要求并非一一对等,以上提到的一部分任务与要求,显然要比其它任务与要求占用更多资源与预算。但这仅仅是一份对比参考,如果您不同意这个方法或者结论,也请在评论中分享您的真知灼见。
好文章,需要你的鼓励
AI技术发展推动数据中心基础设施重构,新一代AI加速器使机架密度超过100千瓦,部分高达600千瓦,传统冷却系统面临极限。液体冷却市场年复合增长率达20%,成为增长最快的数据中心冷却细分领域。这不仅是冷却升级,更是架构演进。支持高密度AI工作负载需要从设施设计、散热、管道到配电和机架集成的全面重新思考,热管理已成为跨学科挑战。
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
高通发布新款骁龙X2 Elite Extreme笔记本处理器,经测试其性能已与苹果M4芯片基本持平。然而这种平衡可能无法持久,因为苹果预计将在明年上半年推出M5芯片,届时将重新拉开性能差距。尽管高通成功实现了英特尔未能做到的追赶,但当搭载骁龙新芯片的PC笔记本上市时,苹果可能已经再次领先。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。