至顶网安全频道 02月07日 编译:安全性的责任应该由云服务供应商与客户共同承担。这种责任分摊模式有助于减轻客户的运营负担,因为云服务供应商将承担起从主机操作系统到虚拟化层,再到运行组件所必需的设施物理安全性等层面的一切运营、管理与控制职能。
就在不久之前,当向基础设施即服务(简称IaaS)平台部署应用程序时,客户还仍然需要承担操作系统的管理与运营责任,包括更新与安全补丁安装、应用程序软件关联以及云端网络防火墙配置等等。在虚拟实例方面,客户有责任认真考量他们所选择的服务选项,确保所使用的服务与其实际需求相匹配,将这些服务与IT环境整合起来并遵循适用的法律法规要求。
但随着无服务器计算(亦被称为函数即服务,简称FaaS)的出现,安全性的天秤进一步朝着云服务供应商倾斜,这意味着组织能够更多将这部分任务移交给供应商并进一步专注于自己的核心业务。然而,通过将安全责任转移到云端,企业到底能够获得多少收益?在今天的文章中,我们将用简单的比对聊聊这个问题。
核心要求:从物理层面到应用层的安全性保障
以下条目遵循自下而上的顺序,我们将从物理安全性开始,一路上升至应用层。
IaaS:服务供应商与客户
IaaS:安全责任;
云服务供应商责任;
客户责任;
在IaaS上开发应用程序时,安全责任大致包含以下几种:
云服务供应商责任
客户责任
无服务器(FaaS):云服务供应商与客户
无服务器:安全责任;
无服务器云服务供应商责任;
无服务器客户责任;
在立足无服务器架构进行应用程序开发时,如何进行责任划分:
云服务供应商责任
客户责任
FaaS还是SaaS?
很明显,各项任务与要求并非一一对等,以上提到的一部分任务与要求,显然要比其它任务与要求占用更多资源与预算。但这仅仅是一份对比参考,如果您不同意这个方法或者结论,也请在评论中分享您的真知灼见。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。