1月21日,全球OCR领域公认最权威的学术会议“2017国际文档分析与识别大会(ICDAR)”揭晓2017 ICDAR竞赛结果,360企业安全人工智能团队凭借深度学习OCR技术获得自然场景中文文字识别比赛第一名。
ICDAR专注于文本领域的识别与应用,有OCR领域的奥斯卡盛会之称,是全球OCR领域公认最权威的学术会议之一,由其组织的RCTW-17竞赛也是当前OCR技术领域全球最具影响力的比赛之一,竞赛中的诸多方法对文字识别技术的发展具有强大推动力。高技术难度、强大实际应用性,也使该盛会受到科研院校、科技公司等的关注,至今已有89个国家的3500多支队伍参与。
图:ICDAR官网公布的比赛成绩单
360企业安全人工智能团队参加的专门针对中文识别的“端到端识别任务”是该项赛事的高难度项目,评测和检验的是对自然场景和网络图片、以及复杂视频中的文字的提取和智能识别能力,比赛中主办方会提供街道视图、海报、菜单、室内场景和屏幕截图等大规模的图片,这些图片中文字有倾斜、垂直、不同字体、各种清晰度等非常不规则和多样化的形态,是传统OCR无法提取和识别的,这也是人工智能技术应用的一个重要方向。
最终360企业安全人工智能团队凭借在深度学习领域的深厚技术积累和应用实践获得了该项目的冠军。并同时获得了另一个项目“文字检测任务”的第四名。
图:ICDAR官网公布的比赛图例
该团队负责人王占一表示,OCR技术可以广泛应用于卡证类、票据类的文字识别、车牌检测识别、商标识别、道路标识识别、自动驾驶等,大大提升产品检测识别效果和用户体验,降低人力成本。360企业安全的深度学习OCR技术适用于政企机构的数据防泄露和网站内容违规监测中,对代码、邮件、文件等不同类型的文档进行分类,然后识别发现文档中的违规行为,对违规文档进行过滤;标记被监测网站中的图片,对图片中的违规、违法、色情的文字内容进行识别发现。
图:在“文字检测任务”中获得第四名
人工智能技术的应用是网络安全行业技术发展的一个方向,360企业安全很早就开始了对机器学习、深度学习等人工智能技术在网络安全领域的研究、探索和实践,取得了阶段性的成果并成功应用于产品中。早在2015年,360企业安全人工智能团队的《深度学习在流量识别中的应用》议题就获得了世界网络安全行业认可,团队成员受邀在BlackHat大会上演讲。360天眼新一代威胁检测系统、NGSOC和态势感知系统等产品和方案中,在数据挖掘、异常检测、复杂网络分析中都成功使用了深度学习和机器学习技术。
好文章,需要你的鼓励
以色列量子初创公司Qedma完成2600万美元A轮融资,IBM参与投资。该公司专注于量子纠错软件开发,其核心产品QESEM可分析噪声模式并抑制错误,使量子电路在现有硬件上的准确运行规模扩大1000倍。IBM等硬件制造商通过与Qedma等软件公司合作,为银行量化分析师和化学家等终端用户提供更易用的量子计算解决方案。
大连理工大学和浙江大学研究团队提出MoR(Mixture of Reasoning)方法,通过将多种推理策略嵌入AI模型参数中,让AI能自主选择最适合的思考方式,无需人工设计专门提示词。该方法包含思维生成和数据集构建两阶段,实验显示MoR150模型性能显著提升,比基线模型提高2.2%-13.5%,为AI推理能力发展开辟新路径。
印尼科技巨头GoTo正在实施"务实且问题驱动"的AI战略,基于其完成的"最复杂和具有挑战性的云迁移之一"。该公司在九个月内将一半基础设施迁移至阿里云,涉及数万PB数据和9000项服务,实现零停机时间。目前GoTo使用阿里云MaxCompute大数据平台和PolarDB数据库,为其交通、电商和金融服务提供支持,并开发了自有大语言模型Sahabat AI。
剑桥大学研究团队开发了FreNBRDF技术,通过引入频率修正机制显著提升了计算机材质建模的精度。该技术采用球面谐波分析提取材质频率信息,结合自动编码器架构实现高质量材质重建与编辑。实验表明,FreNBRDF在多项指标上超越现有方法,特别在频率一致性方面改善近30倍,为游戏开发、影视制作、电商预览等领域提供了重要技术支撑。