IPv6因地址空间巨大,在应对部分安全攻击方面具有天然优势,在可溯源性、反黑客嗅探能力、邻居发现协议、安全邻居发现协议以及端到端的IPSec安全传输能力等方面提升了网络安全性。
针对《推进互联网协议第六版(IPv6)规模部署行动计划》,华为安全给出了IPv6规模部署下网络安全防护的详尽解读,承接上期IPv6行业影响,本期聚焦IPv6安全技术。
可溯源性
IPv6巨大的地址空间为每个网络设备分配了一个独一无二的网络地址,不需要像在IPv4网络中通过NAT解决地址不足问题,从而有利于事后追查回溯,提高安全的保障性。
反黑客嗅探能力
由于庞大的IPv6地址,使得在IPv4网络中常常被黑客使用的嗅探扫描在IPv6网络中变得更加困难。
NDP & SEND
在IPv6中,ARP的功能被邻居发现协议(NDP)所代替。邻居发现协议通过发现链路上的其他节点,判断其他节点的地址,寻找可用路由。对比ARP, NDP仅在链路层实现,更加独立于传输介质。下一代互联网的安全邻居发现(SEND)协议通过独立于IPSec的另一种加密方式,保证了传输的安全性。
端到端IPSec安全传输能力
IPSec为IPv6网络中的每个节点提供了数据源认证、完整性和保密性的能力,实现端到端的安全加密。
Q1IPv6新增的安全特性与IPv4有什么区别?
IPv6网络的安全,由于仅是IP包头、寻址方式发生了变化,内置了端到端的安全机制,所以相对IPv4,在安全方面IPv6对当前的各种安全风险的防范并没有太大的提高。
Q2基于安全性考虑,IPv4网络使用NAT技术来隐藏内网IP地址,IPv6网络是否也需要类似技术来提升安全性?
IPv6的NPT(Network Prefix Translation)(RFC6296)协议可以实现与IPv4 NAT类似的功能,允许IPv6地址的1:1映射,达到隐藏内部IPv6地址的效果。
Q3对于应用层攻击,IPv6网络的防御手段和方式都有哪些影响?
应用层防御功能一般包括协议识别、IPS、反病毒、URL过滤等,主要检测报文的应用层负载,几乎不受网络层协议IPv4/IPv6影响,因此,大部分传统IPv4协议下的应用层安全能力在IPv6网络中不受影响。
但有少部分IPv4网络协议在IPv6网络下自身需要发生了变化,比如DNS协议升级到DNSv6,那么对应的应用层安全检测需要根据协议变化进行调整。
Q4IPv6在扩展头中增加了IPSec的端到端加密能力,如果应用开启了此项功能,那么网络安全设备该如何检测和防御加密流量?
一般情况下,网络安全设备无法解密IPSec加密流量,仅能基于IP地址来控制。但从目前的情况来看,这种“内嵌”的IPSec需要使用密钥分发技术,总体上并不成熟,管理成本高,另外,由于网络安全设备正常是无法解密IPSec流量,防火墙等网络安全设备就无法在网络&应用层来检测IPSec流量,从某种意义上,系统的安全性得不到完整的保证。对于一般企业应用,基于管理成本和安全性考虑,建议仍使用防火墙实现IPSec VPN加解密,并在网关位置进行IPS、状态防火墙等安全检查,待技术成熟后再部署端到端加密。
Q5SSL代理功能在IPv6协议下是否受到影响?
SSL代理不依赖于网络层的具体协议,仍可以对IPv6 SSL加密流量实现解密。
Q6对于IPv6网络,如何通过防火墙来实现安全策略管理,与IPv4的安全策略有何不同?
IPv6与IPv4的安全策略管控是一样的,仍需要基于ACL的五元组来逐条配置,仅是IPv6地址变长,使得策略配置更加复杂。
Q7在现有安全设备上开启IPv4/IPv6双栈功能后,在功能和性能上会对IPv4业务有何影响?
开启IPv4/IPv6双栈一般不会对安全设备的功能产生影响,主要影响设备的性能,因为IPv6协议栈会挤占IPv4业务的CPU和内存等资源,导致现有的IPv4业务在会话表容量、新建速率、吞吐率上会出现不同程度的下降。建议在升级/开启IPv4/IPv6双栈前评估现有安全设备的处理能力,必要时可以替换现有安全设备,避免影响现有IPv4业务。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。