至顶网安全频道 09月21日 综合消息: 9月21日,全球领先的人工智能公司DataVisor在北京召开媒体见面会,详细介绍了进入中国一周年所取得成就和进展。在新闻发布会中,DataVisor的管理团队与客户分享了对社交网络、电商、金融领域反欺诈的看法,并认为,只有采取更智能的技术才能有效检测“坏用户”,提高覆盖面,进而保护客户的数字资产,促进客户的业务良性发展。
众所周知,随着移动互联网和电商的蓬勃发展,伴随而来的是大规模的线上欺诈。多份研究报告指出,全球每年欺诈损失总额大概超过500亿美元。仅在去年一年,全球信用卡、借记卡、预付卡和私有品牌支付卡的损失就高达163.1亿美元。电子零售商和批发商因欺诈损失的金额占其年收入的7.5%以上。每年保险欺诈(不包括健康险)的损失总额大概超过400亿美元。
作为硅谷的技术型创新企业,DataVisor以人工智能领域独创的无监督学习算法为核心,可保护客户免受各种攻击,包括大量虚假账户注册、账号盗取、欺诈交易、身份盗用、洗钱交易、假冒评估、垃圾邮件、虚假安装推广等,所服务的客户有美国点评网Yelp、图片社交软件Pinterest、社交网站陌陌、Blued等。最新数据显示,在全球,DataVisor的用户事件分析总量已超过6千亿,保护用户数量超过20亿,已检测坏用户数量超过1亿3千万。
DataVisor CEO兼联合创始人Yinglian Xie(谢映莲)认为,作为一家美国公司,进入中国市场是非常具有挑战性的。DataVisor在一年内所取得优异的成绩,显然与客户的支持,以及团队的努力是分不开的。自2013年公司成立之初,DataVisor就把中国当作重要的市场看待。
DataVisor进入中国一年的时间里,已经服务包括阿里巴巴、陌陌、探探、大众点评、猎豹移动、趣加游戏等众多国内知名的大型互联网企业,并获得客户的良好口碑。检测真实注册用户的有效率可以提高到99.999%,响应速度为毫秒级。
DataVisor中国区总经理兼技术总监吴中对媒体详细解读了中国线上网络欺诈的现状。他认为,伴随着越来越复杂和越来越具有规模化、隐蔽性的欺诈手段,采用传统的反欺诈方案已经不能适应新形势的发展。而DataVisor独特的一站式风险数据分析平台,以无监督机器学习引擎为核心,同时结合其他检测分析技术,例如有监督机器学习、自动规则引擎和全球智能信誉库等,可帮助中国线上企业迅速找到“坏用户”,从而帮助客户提高运营能力,聚焦于核心业务。
来自今日头条的客户分享了如何利用人工智能抵御欺诈威胁。该客户认为与DataVisor合作有三个明显的优势。1.对接成本很低,无论从时间成本还是技术成本。时间上,可以做到10分钟接入技术平台。2. 准确率高,来源DataVisor独特的无监督机器学习算法。3.速度很快,能够最短时间内发现多个广告渠道的作弊行为,及时止损。双方将继续展开其他领域的合作。
最后,来自国内多家知名的互联网公司如猎豹移动、探探、微店、Blued等参加了会议并作主旨发言。与会嘉宾一致认为,解决网络欺诈难题,必须聚焦于人工智能,深入了解人工智能前沿的理论知识与基础算法,开发出跨行业的产品和解决方案。相信,伴随着DataVisor深入应用国际领先的无监督学习算法,势必会提高中国全行业线上的反欺诈水平。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。