至顶网安全频道 09月21日 综合消息: 9月21日,全球领先的人工智能公司DataVisor在北京召开媒体见面会,详细介绍了进入中国一周年所取得成就和进展。在新闻发布会中,DataVisor的管理团队与客户分享了对社交网络、电商、金融领域反欺诈的看法,并认为,只有采取更智能的技术才能有效检测“坏用户”,提高覆盖面,进而保护客户的数字资产,促进客户的业务良性发展。
众所周知,随着移动互联网和电商的蓬勃发展,伴随而来的是大规模的线上欺诈。多份研究报告指出,全球每年欺诈损失总额大概超过500亿美元。仅在去年一年,全球信用卡、借记卡、预付卡和私有品牌支付卡的损失就高达163.1亿美元。电子零售商和批发商因欺诈损失的金额占其年收入的7.5%以上。每年保险欺诈(不包括健康险)的损失总额大概超过400亿美元。
作为硅谷的技术型创新企业,DataVisor以人工智能领域独创的无监督学习算法为核心,可保护客户免受各种攻击,包括大量虚假账户注册、账号盗取、欺诈交易、身份盗用、洗钱交易、假冒评估、垃圾邮件、虚假安装推广等,所服务的客户有美国点评网Yelp、图片社交软件Pinterest、社交网站陌陌、Blued等。最新数据显示,在全球,DataVisor的用户事件分析总量已超过6千亿,保护用户数量超过20亿,已检测坏用户数量超过1亿3千万。
DataVisor CEO兼联合创始人Yinglian Xie(谢映莲)认为,作为一家美国公司,进入中国市场是非常具有挑战性的。DataVisor在一年内所取得优异的成绩,显然与客户的支持,以及团队的努力是分不开的。自2013年公司成立之初,DataVisor就把中国当作重要的市场看待。
DataVisor进入中国一年的时间里,已经服务包括阿里巴巴、陌陌、探探、大众点评、猎豹移动、趣加游戏等众多国内知名的大型互联网企业,并获得客户的良好口碑。检测真实注册用户的有效率可以提高到99.999%,响应速度为毫秒级。
DataVisor中国区总经理兼技术总监吴中对媒体详细解读了中国线上网络欺诈的现状。他认为,伴随着越来越复杂和越来越具有规模化、隐蔽性的欺诈手段,采用传统的反欺诈方案已经不能适应新形势的发展。而DataVisor独特的一站式风险数据分析平台,以无监督机器学习引擎为核心,同时结合其他检测分析技术,例如有监督机器学习、自动规则引擎和全球智能信誉库等,可帮助中国线上企业迅速找到“坏用户”,从而帮助客户提高运营能力,聚焦于核心业务。
来自今日头条的客户分享了如何利用人工智能抵御欺诈威胁。该客户认为与DataVisor合作有三个明显的优势。1.对接成本很低,无论从时间成本还是技术成本。时间上,可以做到10分钟接入技术平台。2. 准确率高,来源DataVisor独特的无监督机器学习算法。3.速度很快,能够最短时间内发现多个广告渠道的作弊行为,及时止损。双方将继续展开其他领域的合作。
最后,来自国内多家知名的互联网公司如猎豹移动、探探、微店、Blued等参加了会议并作主旨发言。与会嘉宾一致认为,解决网络欺诈难题,必须聚焦于人工智能,深入了解人工智能前沿的理论知识与基础算法,开发出跨行业的产品和解决方案。相信,伴随着DataVisor深入应用国际领先的无监督学习算法,势必会提高中国全行业线上的反欺诈水平。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。