思博伦通信在其旗舰安全测试解决方案-CyberFlood中新增了业界第一种服务器-响应模糊攻击能力,从而使思博伦在安全与性能测试领域的领先优势进一步扩大。CyberFlood的服务器-响应模糊攻击功能是安全与性能测试领域的一项重大突破,利用单个测试解决方案即可测试安全设备应对互联网上某台服务器向某客户端设备发送的畸形流量的能力,包括防火墙、入侵阻止系统(IPS)、加密Web网关等。在实现这一目标的过程中,无需耗费大量的时间、精力和资金去构建复杂的测试环境,用户能够以前所未有的速度迅速建立并运行测试,并且得到更好的结果。
思博伦通信产品与安全威胁研究总监David DeSanto表示:“我们去年发布了支持SmartMutation™的CyberFlood,它是第一种真正的智能驱动式模糊攻击策略,为安全测试树立了新的基准,使我们的测试能够比业界的其它解决方案都更加深入、广泛,并且跨越更多的代码路径。在进行设备测试时,今天的其它模糊攻击解决方案只能为用户提供针对客户端网络协议定义进行模糊攻击的能力。”
他还指出:“利用CyberFlood的独特技术,用户可以网络协议的服务器定义进行模糊处理,确认某设备能够应对互联网上某台服务器向客户端设备发出的畸形响应,而这正是今天的黑客所使用的最常见的攻击向量。这为企业、服务商和设备制造商提供了一种测试安全设备的快速、简便的方法,而且无需建立测试环境,更不会在测试期间出现误警。”
在增强CyberFlood易用性的同时,最新的CyberFlood更新还包含了多种全新的特性:
· 全新的纯攻击和纯客户端DDoS攻击模式,为DDoS攻击仿真提供了更高的灵活性,并且只需点击几次鼠标便可使客户从CyberFlood的登录屏幕快速进入一次大规模的DDoS攻击仿真。
· 全新的网络弹性测试,涵盖了全系列的RFC 2544验证,包括测量最大吞吐量、时延、抖动和突发能力。
· 测试可以按具体侧重目标进行分组管理,例如即将发布的软件版本或企业产品评测,从而使团队内部的协作能力得到增强。
· 更多的模糊攻击协议使CyberFlood能够测试整个2层至7层栈的各类设备,并且可以涵盖多个行业垂直门类,包括工业控制、健康医疗、金融、物联网和汽车等。
CyberFlood一直在为恶意软件测试树立新的标准,并且为业界提供了惟一的一种近当日恶意软件产品,使企业能够找出其所面临威胁中的漏洞,服务商则可以利用它来验证其SLA,而设备制造商则可以确认并扩展其特征和启发探测功能。
安全威胁管理领域的领导者-Wedge Networks公司首席执行官James Hamilton说:“WedgeAMB为我们的客户提供了毫无妥协的恶意软件阻止能力,利用IPS的在线实时阻止速度,实现了沙箱的威胁探测精度。CyberFlood能够利用单个解决方案的最新、最独特的恶意软件测试提供全面的性能和精度测试能力,使我们可以连续不断地评测、演示和改进我们的解决方案。”
思博伦在RSA2017
2017年2月13日至17日,思博伦通信将在旧金山Moscone中心举办的RSA大会的南厅S2015展台公开展示CyberFlood v17.1.0。思博伦还将在该展台演示CyberFlood的服务器-响应模糊攻击和先进的恶意软件测试能力。
同时在该展会上,思博伦定位安全技术专家Guy Buesnel还将组织一个教学分会场,向与会者介绍全球导航卫星系统(GNSS)所面临人为威胁的演化情况。该分会场将于2月17日上午9时在Moscone西厅举行,重点介绍人为GNSS威胁的演化,并且为您呈现探测器设备网络所发现的使用人为干扰机的最新证据。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。