ZD至顶网安全频道 02月16日 综合消息: 每一年,旧金山的RSA大会都会在其加密专项讨论环节中,吸引到全球最出色及最睿智的头脑,而其探讨核心也非常简单——摆脱一切热门及炒作性因素,集中精力考虑如何实现更出色、更简洁且更安全的编程成果。
研讨小组各成员对于人工智能安全系统(尽管其已经在DARPA Cyber挑战赛中取得成功)的动向毫不关心,并表示目前探讨此类系统的可靠性还为时过早,同时警告称相当一部分此类设想将永远无法变为现实。
“我对于AI在安全领域的应用持怀疑态度,”麻省理工学院教授兼RSA三巨头中的“R” Ronald Rivest表示。“我们发现AI机器人的聊天表现已经成为像去年总统大选一样热门但无聊的议题。至少还要十到十五年,我们才会真正难以在一堆聊天机器人中发现真正的人类。”
而前RSA成员、现任魏兹曼研究所计算机科学教授Adi Shamir对于AI系统在安全领域的作用亦同样抱有怀疑。对此类设备进行训练可能带来一些有趣的问题。
“十五年之后,如果我们将全部数据都交给AI系统打理,其可能会认为为了保护互联网,最好是将其彻底毁灭,”他打趣道。“互联网本身是无可挽救的; 我们必须找到更理想的起点。”
一部分AI系统也许确实能够用于IT防御,Shamir坦言,这是因为未来的计算机将能够处理规模更大的数据集并检查其中的异常状况。然而大家仍然需要人为介入以发现零漏洞以及与之相关的攻击行为。
Shamir同样对量子计算系统与量子加密技术表达了不屑,他表示这些“不在我的考虑范围内”。他更关心如何利用大规模计算来破解现有加密算法。
伍斯特理工学院网络安全政策教授Susan Landau则表示她对量子计算系统相当担忧。目前行业在利用量子计算能力建立防御性算法方面缺少足够的研究,她坚持认为这很可能成为安全领域的一大致命短板。
与此同时,公钥加密机制发明者之一Whitfield Diffie指出,目前安全业界面临的问题在于,各类潜在风险绝不可能被AI或者量子技术一股脑奇迹般地解决。相反,行业内需要重新回归基础,他建议称。
“如果能够将投入到防火墙及反病毒软件等交互式安全方案的资源用于改进设备的逻辑功能并显著提升编程质量,我们将能够得到更好的结果,”Diffie总结称。
好文章,需要你的鼓励
当前企业面临引入AI的机遇与挑战。管理层需要了解机器学习算法基础,包括线性回归、神经网络等核心技术。专家建议从小规模试点开始,优先选择高影响用例,投资数据治理,提升员工技能。对于影子IT现象,应将其视为机会而非问题,建立治理流程将有效工具正式化。成功的AI采用需要明确目标、跨部门协作、变革管理和持续学习社区建设。
这项由东京科学技术大学等机构联合发布的研究提出了UMoE架构,通过重新设计注意力机制,实现了注意力层和前馈网络层的专家参数共享。该方法在多个数据集上显著优于现有的MoE方法,同时保持了较低的计算开销,为大语言模型的高效扩展提供了新思路。
美国垃圾收集行业2024年创收690亿美元,近18万辆垃圾车每周运营六至七天,每日停靠超千次。设备故障成为行业最大隐性成本,每辆车年均故障费用超5000美元。AI技术通过实时监控传感器数据,能提前数周预测故障,优化零部件库存管理,减少重复维修。车队报告显示,预测性维护每辆车年节省高达2500美元,显著提升运营效率和服务可靠性。
小米团队开发的MiMo-7B模型证明了AI领域"小而精"路线的可行性。这个仅有70亿参数的模型通过创新的预训练数据处理、三阶段训练策略和强化学习优化,在数学推理和编程任务上超越了320亿参数的大模型,甚至在某些指标上击败OpenAI o1-mini。研究团队还开发了高效的训练基础设施,将训练速度提升2.29倍。该成果已完全开源,为AI民主化发展提供了新思路。