
最新研究表明,智能手表、健康追踪器(Fitness Tracker)等腕带和臂章设备有可能被攻击者用来监视你;此外,通过智能手表中内置的运动传感器,攻击者能够通过受害者手部运动数据来猜测用户向键盘上输入的数据。
可穿戴设备安全问题
关于利用物联网设备来监视用户的可能性,我们之前已经讨论了好多次。缺乏安全性的设计以及糟糕的安全设置,都有可能向黑客敞开攻击的大门。通过一个智能手表或者健康追踪器,黑客就能知道用户在键盘上输入的个人信息。
运动泄漏项目
在今年9月份,ECE伊利诺斯州的副教授Romit Roy Choudhury领导一组学生,开发了一个移动APP,这个应用程序能够通过分析智能手表的移动来检测用户按下的键盘按键。这些研究人员计划在本周巴黎举行的MobiCon 2015大会上展示这一研究成果。
这个项目称为“运动泄漏(Motion Leaks,MoLe)”,它由美国国家科学基金会资助。目前,研究人员已经在一款三星Gear Live智能手表上安装了这个本土APP。
使用智能手表的内置运动传感器,以及来自加速度计和陀螺仪的更具体数据,在用户利用键盘打字时,研究人员能够创建一个用户手运动轨迹的3D地图。
深度监视项目
现在,哥本哈根大学的一位硕士研究生Tony Beltramelli,提出了另一个名为“深度监视(deep-spying)”的项目,它利用可穿戴设备内置的陀螺仪和加速度计收集的数据进行监视。通过分析用户运动,可以猜测他们通过键盘所写的内容。例如,当受害者访问一台ATM机时,就能够通过他手部的运动来猜测他输入PIN码的信息。
Beltramelli写道:
“智能手表确实可能会穿戴一整天,这就向网络罪犯提供了一个普遍的攻击面。因此,这一点意义重大:利用运动传感器连续猜测按键内容可能一直会发生。”
由Beltramelli开发的软件从索尼智能手表3收集运动数据,并通过分析它来猜测用户输入的所有信息。下面的POC视频演示了猜测在键盘上输入数字的系统。
这位研究者的目标是,提高用户对物联网设备中内置的运动传感器风险的认识,并展示如何使用它们来监视用户。论文中陈述道:
“在这项研究中,基于LSTM的实现可以在12-键的小型键盘上执行高精度的触控日志和键盘日志功能,即使面对原始未经处理的数据也能达到很高的精度。因此证明,通过基于运动传感器所收集的数据,并进行不相关数据的排除及精心设计的特征提取策略,深层神经网络能够执行按键推理攻击。”
最后,这项研究表明,智能手表和其他可穿戴设备正在扩大我们受攻击的攻击面。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。