
最新研究表明,智能手表、健康追踪器(Fitness Tracker)等腕带和臂章设备有可能被攻击者用来监视你;此外,通过智能手表中内置的运动传感器,攻击者能够通过受害者手部运动数据来猜测用户向键盘上输入的数据。
可穿戴设备安全问题
关于利用物联网设备来监视用户的可能性,我们之前已经讨论了好多次。缺乏安全性的设计以及糟糕的安全设置,都有可能向黑客敞开攻击的大门。通过一个智能手表或者健康追踪器,黑客就能知道用户在键盘上输入的个人信息。
运动泄漏项目
在今年9月份,ECE伊利诺斯州的副教授Romit Roy Choudhury领导一组学生,开发了一个移动APP,这个应用程序能够通过分析智能手表的移动来检测用户按下的键盘按键。这些研究人员计划在本周巴黎举行的MobiCon 2015大会上展示这一研究成果。
这个项目称为“运动泄漏(Motion Leaks,MoLe)”,它由美国国家科学基金会资助。目前,研究人员已经在一款三星Gear Live智能手表上安装了这个本土APP。
使用智能手表的内置运动传感器,以及来自加速度计和陀螺仪的更具体数据,在用户利用键盘打字时,研究人员能够创建一个用户手运动轨迹的3D地图。
深度监视项目
现在,哥本哈根大学的一位硕士研究生Tony Beltramelli,提出了另一个名为“深度监视(deep-spying)”的项目,它利用可穿戴设备内置的陀螺仪和加速度计收集的数据进行监视。通过分析用户运动,可以猜测他们通过键盘所写的内容。例如,当受害者访问一台ATM机时,就能够通过他手部的运动来猜测他输入PIN码的信息。
Beltramelli写道:
“智能手表确实可能会穿戴一整天,这就向网络罪犯提供了一个普遍的攻击面。因此,这一点意义重大:利用运动传感器连续猜测按键内容可能一直会发生。”
由Beltramelli开发的软件从索尼智能手表3收集运动数据,并通过分析它来猜测用户输入的所有信息。下面的POC视频演示了猜测在键盘上输入数字的系统。
这位研究者的目标是,提高用户对物联网设备中内置的运动传感器风险的认识,并展示如何使用它们来监视用户。论文中陈述道:
“在这项研究中,基于LSTM的实现可以在12-键的小型键盘上执行高精度的触控日志和键盘日志功能,即使面对原始未经处理的数据也能达到很高的精度。因此证明,通过基于运动传感器所收集的数据,并进行不相关数据的排除及精心设计的特征提取策略,深层神经网络能够执行按键推理攻击。”
最后,这项研究表明,智能手表和其他可穿戴设备正在扩大我们受攻击的攻击面。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。